Monday  21-04-2014
Electrical Engineering
Detailed Syllabus for 1st & 2nd semesters

               Brief & Detailed Syllabi

First and Second Semester B.Tech.  2003 admission onwards



1.         MA101T  Mathematics I                                                                                                                    3-1-0-4


Infinite Series, Tests of convergence, Preliminary Calculus, First order ordinary Differential Equations, Methods of solution and applications of linear ODE with constant coefficients.  Fourier series, Fourier integrals and Fourier transforms, Gamma and Beta functions, Laplace Transforms, properties and applications


2.         MA102T  Mathematics II                                                                       3-1-0-4


Systems of Linear equations, Vector Spaces, basis and dimensions, Linear transformations, Matrices, Eigen values and Eigen vectors, Vector differential calculus, Multiple integrals, Vector integral calculus.


3.         SH101T  Physics I                                                                               3-0-0-3


Polarisation of light, double refraction, optical activity, magneto and electro optic effects, photoelasticity, lasers, nonlinear optics, optical mixing, holography, Fibre optics, Fibre optic sensors, crystal structure,     X-ray diffraction, NDT methods, techniques for materials studies.


4.         SH102C  Physics II                                                              2-0-2-3


Quantum mechanics, Schrodinger.s wave equation, applications, semiconductors, bandgap, Fermi energy, Hall effect, photodetectors, superconductivity, B.C.S theory, Josephson.s effects, high Tc superconductors, Laboratory experiments on double refraction, optical activity, lasers, semiconductors, photodetectors, ultrasonics  diffraction, OFC.


5.         SH103C  Chemistry                                                                 2-0-2-3


Solid State Chemistry: Nature and Properties of Solids, Surface characterisation, Superconductors, Applications. Electrochemistry: Cells, Power generation and Corrosion Chemical.  Thermodynamics: Thermodynamics of chemical and biochemical reactions.  Engineering materials: Chemistry and Technology of Polymers, Ceramics, Refractories, Nanomaterials and organoelectronic materials.  Laboratory work: analysis of Water, Lubricants, Fertilisers and Polymers.


6.         SH 106 T Professional Communication                                          3-0-0-3


Oral Communication . Purpose and Audience . Using Graphics - Oral Presentations . Reading Comprehension and Reference skills . Reading Strategies- Written Communication- Paragraph writing . Short Essays .Essay Writing .Writing Report . Description of Processes and Product  - Editing and Proof Reading .


7.         ZZ 101T  Engineering Mechanics . Statics                           2-1-0-3


Fundamentals of mechanics, elements of vector algebra, position vector, moment of a force about a point and about an axis, couple moment, equivalent force systems, resultant of a force system, equations of equilibrium, free body diagram, introduction to structural mechanics, trusses, section forces in beams, shear force, axial force and bending moment, differential relations for equilibrium, force systems in chains and cables, friction forces, belt friction, square screw thread, rolling resistance, properties of surfaces, first and second moments of an area, transfer theorems, principal axes and principal moments of area.


8.         ZZ 102T  Engineering Mechanics . Dynamics                         2-1-0-3


Kinematics of a particle, differentiation of a vector with respect to time, rectangular and cylindrical components, simple relative motion, motion of a particle relative to a pair of translating axes, particle dynamics, Newton.s law, general motion of a system of particles, energy methods for particles, conservative force field, conservation of mechanical energy, systems of particles, methods of momentum for particles, impulse and momentum relations for a system of particles, moment of momentum equation for a single particle and for a system of particles, kinematics of rigid bodies, translation and rotation of rigid bodies, Chasles. theorem, derivative of a vector fixed in a moving reference, velocities and accelerations of a particle for different references, kinetics of plane motion of rigid bodies, moment-of-momentum equations, pure rotation of a body of revolution about its axis of revolution, pure rotation of an arbitrary rigid body.

9.         ZZ103D Engineering Graphics I                                               1-0-3-3


            Plane curves, orthographics projections of points, planes and solids


10.      ZZ104D Engineering Graphics II                                              1-0-3-3


Sections and intersections of solids, development of surfaces of solids, isometric and perspective projection.


11.      EE101T  Basic Electrical Engineering                                   2-1-0-3


DC Circuit Analysis, Circuit Theorems, Concept of Magnetism, Electrostatics, Chemical reaction and characteristics, of batteries.  Alternating Quantities: basic fundamentals, analysis of AC circuits, PolyPhase working measuring instruments, Familiarisation of wiring installations, household appliances and service mains, study of wiring systems and wiring practice.


12.      EC 101T   Basic Electronics Engineering                        2-1-0-3


Semiconductor materials and Junction Diodes, Zener diodes, Photo Diodes and LEDs -
Diode Circuits - Bipolar Junction Transistors . Theory, CE, CB & CC Configurations, Static Characteristics, Principle of BJT Amplifiers. Operational Amplifiers- Ideal Opamp Parameters, Linear applications of Opamps Digital Electronics .Number systems, Boolean Algebra, Simplification of Boolean Functions, Design of Simple Combinational Circuits including Half and Full Adders, Code converters, Digital Comparators. Communication Systems . AM, FM, Radio Communication, Transmitter and Receiver Block Diagrams, Theory of FAX, Modems and Introduction to Digital Communication.


13.      CS102T   Introduction to Computing                                    2-1-0-3


Algorithm discovery and design, analysis of algorithms, Boolean functions and logical operations,  Karnaugh map, Quine-McClusky algorithm, computer organization,  assemblers and assembly languages, operating systems, object oriented programs, HTML, compilation, Turing machine, databases, computer networks,  Internet and WWW, computing security.


14.      CE101 L Civil Engineering Workshop                                           0-0-2-1


Introduction to surveying, linear measurements using chain and tape, leveling, level difference between points, use of special instruments.  Tests on cement Concrete- mixing and placing mild steel.  Physical and Engineering properties of soil, Air quality, measurement in Traffic Engineering.


15.      ME 103 L  Mechanical Engineering Workshop                            0-0-2-1


Objective: To familiarise with the basic manufacturing processes and to study the various tools and equipment used, hands-on training is given in different sections. (a).Machine Shop (b). Fitting, Welding and Plumbing Practice (c). Carpentry & Sheet Metal Work  (d). Foundry and Smithy .





Lecture:3 hours,Tutorial:1 hour per week              Total: 52 hours                            Credits: 4



Module I                                                                                                                           (11 hours)

Preliminary Calculus: Partial differentiation, Total differential and total derivative, Exact differentials, Chain rule,  Change of   variables, Minima and maxima of functions of two or  more  variables.  

Infinite series: Notion of convergence and divergence of infinite series, Ratio test, Comparison test, Raabe's test, Root test, Series of positive and negative terms, Idea of absolute convergence, Test for alternating series, Power series, Interval of convergence,Taylor's and Maclaurin's series.


Module II                                                                                                                          (16 hours)

Differential Equations: First order ordinary differential equations, Methods of solution, Separable, exact and linear differential equations, Existence uniqueness of solution, Method of successive approximations, Picard's theorem and Lipschitz' conditions- Orthogonal trajectories, Applications of first order differential equations.

                                       Linear second order equations: Homogeneous linear equations with constant coefficients, Fundamental system of solutions, Existence and uniqueness conditions, Wronskian, Non homogeneous equations, Methods of solution, Applications.


Module III                                                                                                                        (12 hours)

Fourier Analysis: Periodic functions, Fourier series, Functions of arbitrary period, Even and odd functions, Half Range Expansions, Harmonic analysis, Complex Fourier Series, Fourier Integrals, Fourier Cosine and Sine Transforms, Fourier Transforms.


Module IV                                                                                                                         (13 hours)

Laplace  Transforms: Gamma functions and Beta functions, Definition and properties. Laplace Transforms; Inverse Laplace Transforms, Shifting Theorem, Transforms of derivatives and integrals, Solution of differential Equations, Differentiation and Integration of Transforms, Convolution, Unit Step function, Second Shifting Theorem, Laplace Transform of periodic functions.


Text Book

1.     Kreyszig, E., Advanced Engineering Mathematics, 8th edition, John Wiley  & Sons, New York, 1999.


1.     Piskunov,  N.,   Differential & Integral calculus, MIR Publishers, Moscow, 1974.

2.     Wylie, C. R. &Barret, L. C., Advanced Engineering Mathematics, 6th edition, McGraw Hill, New York, 1995.

3.     Thomas, G. B., Calculus & Analytic Geometry,  Addison Wesley, London, 1998.











Lecture : 3 hours, Tutorial:1 hour per week                     Total: 52 hours                  Credits: 4


Module I                                                                                                                           (13 hours)

Linear Algebra I:  Systems of Linear Equations,  Gauss' elimination, Rank of a matrix, Linear independence Solutions of linear systems: existence, uniqueness, general form.  Inverse of a matrix, Gauss - Jordan elimination, Vector spaces, Subspaces, Basis and Dimension, Inner  product spaces, Gram - Schmidt orthogonalisation, Linear Transformations.


Module II                                                                                                                          (13 hours)

Linear Algebra II:Eigen values and Eigen vectors of a matrix, Some applications of Eigen value problems, Quadratic forms,  Symmetric, skew-symmetric and Orthogonalmatrices,  Complexmatrices,  Hermitian, Skew-Hermitian and  Unitary matrices,  Similarity of matrices,  Basis of Eigen vectors -  Diagonalization.


Module III                                                                                                                        (12 hours)

Vector Calculus I: Vector and Scalar functions and fields ,  Derivatives,  Curves,  Tangents,  Arc length, Curvature, Gradient of a Scalar Field, Directional derivative,  Divergence of a vector field,  Curl of a Vector field.


Module IV                                                                                                                         (14 hours)

Vector Calculus II: Line Integrals,  Line Integrals independent of path,  Double integrals,  Surface integrals,  Triple Integrals, Verification and simple applications of Green's Theorem,  Gauss'  Divergence Theorem and  Stokes's Theorem.


Text Book


1.     Kreyszig, E.   Advanced Engineering Mathematics, 8th edition, John Wiley &Sons, New York, 1999.



1.     Wylie, C. R.  &Barret, L. C.,  Advanced Engineering Mathematics, 6th , McGraw Hill, New York, 1995.

2.     Hoffman, K. &Kunze, R., Linear Algebra, Prentice Hall of India, New Delhi, 1971.

3.     Davis, H. F. & Snider, A. D.,  Introduction to Vector analysis, 6th  edition, Universal Book Stall, New Delhi, 1992.














Lecture: 3 hours per week                            Total:39 hours                                    Credits: 3


Module I                                                                                                                (10 hours)

Polarisation of light  , double  refraction, Nicol prism, Huygen.s theory, quarter and half . wave plates, circularly and elliptically polarised lights, optical activity, Laurent.s half . shade polarimeter, Faraday and Kerr effects, Pockel.s effect, Cotton -Mouton effect, Applications of polarised light, Photoelasticity, stress, optic law, isoclinics and isochromatics, Moire fringes.


Module II                                                                                                                          (10 hours)

Laser Physics, basic principles, Einstein coefficients, pumping, conditions for lasing action, line broadening, coherence of laser beam, He-Ne laser, semiconductor laser, non-linear optics: second and third harmonic generations, optical mixing and frequency upconversion, Applications of lasers, holography, applications of holography.


Module  III                                                                                                                       (10 hours)

Fibre Optics, basic principle of OFC - OFC construction and materials, Types of fibres, light propogation through the fibres, optical fibres in communications, coherent bundles, applications of OFC, fibre optic sensors.

Crystal structure, cubic structures, no. of atoms/unit cell, coordination no.,  packing factor, directions, Miller indices,  inter planar spacing, X-ray diffraction, Bragg.s X-ray spectrometer, powder crystal method, crystal structure analysis.


Module  IV                                                                                                                          (9 hours)

Non-destructive Testing (NDT), radiographic, liquid penetrant, electrical, magnetic, ultrasonic, holographic and photoelastic methods.

Techniques for Materials Studies, atomic absorption spectroscopy,  X-ray fluorescence, NMR and NSR . EMR.


Text Books

1.     Premlet,Advanced Engineering Physics, 4edition, Phasor Books  Publications,  Quilon, 2000.

2.     Pillai, S. O.Solid State Physics, 4th edition, New Age International  Publishers, Bangalore, 2001.



1.     Srinivasan, M. R.,  Physics for Engineers, New Age International Publishers, Bangalore, 1998.

2.     Laud, B. B., Lasers & Non-linear Optics, Wiley Eastern Ltd., Bangalore, 1991.

3.     Tarasov, L.,  Laser Physics & Applications, Mir Publishers, Moscow, 1986.

4.     Arumugam, M.,  Engineering Physics, 2nd  edition , Anuradha AgenciesPublishers,  Kumbakonam, 1997.

5.     Srivastava, C. M. &. Srinivasan,C.,     Science of Engineering Materials,Wiley Eastern Ltd., Bangalore, 1991.






Lecture:2 hours, Practical:2 hours per week                 Total: 52 hours                      Credits: 3



Module  I                                                                                                                            (9 hours)

Quantum Mechanics, Newtonian mechanics and Quantum mechanics, Schrodinger.s time dependent and time independent wave equations, physical significance of ψ,Limitations and normalisation of ψ,operators and expectation   values,  Applications of  Schrodinger.s equation to free particle, particle in a box, rectangular potential barrier.


Module  II                                                                                                                (9 hours)

Semiconductors, band theory of solids, classification of solids on the basis of band theory, derivation of expressions for carrier density (n) and conductivity  (σ), determination of band gap, derivation of Fermi Energy, Hall effect, derivation of expressions for Hall coefficient, applications, working and characteristics of LDR, LED, Zener diode,  solar cell,  photodiode and phototransistor.


Module III                                                                                                                          (8 hours)

Superconductivity, d.c. resistivity,  Meissner effect,  critical magnetic field , critical current, penetration depth, flux quantisation, a.c. resistivity, isotope  effect, thermal properties, energy gap, Type . I and Type . II superconductors, B.C.S. theory,  D.C. and A.C. Josephson.s tunneling effects, SQUID, 1-2-3 superconductors, applications of superconductivity.


Text Books  

1.        Premlet,  Advanced Engineering Physics, 4th edition, Phasor BooksPublishers, Quilon, 2000.

2.        Pillai, S.O.,  Solid State Physics,4th edition, New Age International Publishers, Bangalore, 2001.


1.     Chopra, K.K. &Agarwal, G.C.,  Quantum Mechanics, Krishna Prakashan Media P. Ltd.

2.     Dekker, A. J., Electrical Engineering Materials, Prentice Hall of India P. Ltd., New Delhi, 1979.

3.     Blakemore, W., Solid State Physics, Cambridge University Press, Cambridge, 1988.





1.   Determination of   µo and  µe of quartz (or Calcite)

2.        Half . shade polarimeter . determination of specific rotatory power.

3.        Laser . measurement of angle of divergence

4.        Laser . grating . determination of   λ

5.        Determination  of band . gap of semiconductor

6.        Determination of Planck.s constant

7.        Ultrasonics diffractometer . measurement of ultrasonic vel. in liquid

8.        Characteristics of Zener diode

9.        LED Characteristics

10.     Solar Cell Characteristics

11.     Photodiode Characteristics

12.     Phototransistor Characteristics

13.     LDR Characteristics

14.     Measurement of numerical aperture and attenuation of  OFC

15.     Hall effect . determination of carrier density, hall coefficient and mobility

NOTE :  Any 10 experiments have to be done.


1.     Avadhanulu, Dani &  Pokley,          Experiments in Engineering Physics, 1/e S. Chand & Company Ltd., New Delhi, 1996.




Lecture:2 hours, Practical:2 hours per week              Total: 52 hours                         Credits: 3


Module 1                                                                                                                  (6 hours)

Solid state chemistry: Fundamentals, Bonding in solids, Born-Haber cycle,  Point defects,  Methods to improve reactivity of  solids,  Free electron theory, Band theory, Fermi level in semiconductors, Molecular field theory of  magnetic materials, Conventional and organic superconductors, High temperature superconductors, Liquid crystals, Applications. Solid surface characterisation: Electron spectroscopy for chemical analysis, Chemical shift, BET isotherm, Thermodynamics of adsorption.


Module II                                                                                                               (7 hours)

Electrochemistry: Fundamentals, Electrode potentials, Types of electrodes, Salt bridge, emf measurement, Concentration cells, Acids and bases, Buffer solutions,  pH measurements, Polarisation, Overvoltage.  Power generation:  Secondary cells, Fuel cells, Photovoltaic effect, Solar cells. Corrosion:  Different forms of corrosion, Prevention of corrosion.  


Module III                                                                                                                (6 hours) 

Chemical Thermodynamics: Fundamentals, Molecular interpretation of internal energy,  enthalpy and entropy, Heat of reaction, Kirchhof.s equation, Trouton.s rule, Entropy changes accompanying different processes,  Nernst heat theorem, Third-law entropies. Free energy: Dependence on pressure and temperature, Gibbs-Helmholtz equation, Free energy changes and equilibrium constant, Chemical potential, Fugacity, Thermodynamics of biochemical reactions.


Module IV                                                                                                                    (7 hours) 

Engineering Materials: Industrial Polymers- General introduction, Raw materials, Compounding, Structure-property relationships, Phase transition in polymeric systems. Cements: Raw materials, Manufacture of portland cement, Lime, Manufacture of lime, Gypsum, Plasters - Setting. Refractories: Requirements of a refractory, Classification, Manufacture and properties. Lubricants:  Classification, Properties, Additives, Mechanism of lubrication.

Chemistry of  optical fibres, Memory metals, Nanomaterials, Organoelectronic materials, Buckminster fullerenes.


CHEMISTRY   LABORATORY  WORK   13×2 hours  1313

 1.        Determination of acidity of transformer oil

2.        Determination of total hardness of water

3.        Determination of   viscosity coefficient of a liquid

4.        Determination of melting point of a solid and boiling point of a liquid

5.        Determination of ammonia in a fertilizer

6.        Colorimetric determination of  copper

7.        Determination of flash point and pour point of a lubricant

8.        Chromatographic separation of a mixture of cobalt, manganese, nickel and zinc

9.        Estimation of chloride ion in a solution

10.     Preparation of nylon 6,6.

11.     Preparation of phenol-formaldehyde resin



1.        Atkins, P.W.,   Physical Chemistry, Oxford University Press, UK, 1998.

2.        Bhatnagar, M. S.,   Textbook of Pure & Applied Physical Chemistry, A. H. Wheeler & Co, New Delhi, 1999.

3.        Fred, W. Billmeyer, Jr., Textbook of Polymer Science, John-Wiley & Sons, Inc., Ne

Contact Information