A BRUSHLESS DC MOTOR SPEED CONTROL SYSTEM USING ADAPTIVE FUZZY LOGIC CONTROLLER

SEMINAR REPORT
BY
V.S.SASIKUMAR (M060121EE)
II-SEMESTER
EED (COMPUTER CONTROLLED INDUSTRIAL POWER)
M.TECH

DEPARTMENT OF ELECTRICAL ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
NITC CAMPUS P.O, CALICUT
KERALA, INDIA 673601
This is to certify that, this seminar report entitled “A BRUSHLESS DC MOTOR SPEED CONTROL SYSTEM USING ADAPTIVE FUZZY LOGIC CONTROLLER” is a bonafide record of the seminar presented by SASIKUMAR V S bearing Roll. No. M060121EE of the 2nd semester course in partial fulfillment of the requirement for the award of degree of Master of Technology in COMPUTER CONTROLLED INDUSTRIAL POWER by National Institute of Technology, Calicut for the year 2006-2008

Dr .K.M.Moideen kutty
Professor & Head
Dept. of Electrical Engg.

Subha D P
Lecturer & seminar incharge
Dept. of Electrical Engg.

Place: NITC, Calicut
Date:
Acknowledgements

I am grateful to Dr. K. M. Moideen Kutty, Professor & Head of the Department of Electrical Engineering, for providing me the best facilities and atmosphere for the seminar completion and presentation. I express my sincere gratitude to our seminar incharge Subha D. P, Lecturer and our program coordinator Dr. S. Ashok, Assistant Professor, Department of Electrical Engineering, for their valuable guidance and help. I thank the faculty of electrical engineering department, for their valuable support. Also I thank all the friends and well-wishers for their healthy criticism and valuable cooperation in all respect.

SASIKUMAR V S
M060121EE
CONTENTS

1. Introduction - 1

2. Conventional control - 2
 2.1 Conventional PI control

3. Structure of fuzzy logic system - 4
 3.1 Fuzzy logic system
 3.2 Fuzzy control
 3.3 Input variables and normalization
 3.4 Fuzzification
 3.5 Rule base
 3.6 Inference engine
 3.7 Defuzzification
 3.8 Output normalization

4. Hybrid controller - 10
 4.1 Adaptive fuzzy logic control

5. Brushless dc motor - 11
 5.1 A Brushless DC Motor Speed Control System Using Fuzzy Rules
 5.2 Brushless dc motor
 5.3 Fuzzy reasoning
 5.4 Control strategies
 5.5 Building the rule-based controller

6. Conclusion - 19

7. References - 20
Figures

Figure.1 Unity-gain feedback control system employing a general PI controller
Figure.2 Specific block diagram of the feedback control system using a PI compensator.
Figure.3 Block diagram of a fuzzy control system
Figure.4 Flow diagram of a fuzzy control system
Figure.5(a) Block diagram of fuzzification
Figure.5(b) Membership function for the error, $e(k)$, change of error, $ce(k)$ and output u_{fz}.
Figure.5(c) Block diagram of defuzzification
Figure.6 The Adaptive fuzzy logic controller.
Figure.7 The overall control scheme (BLDCM)
Figure.8 Inverter connected to a brushless dc motor
Figure.9 Switching sequences of a 180° inverter
Figure.10 Flow diagram, of robust controller
Figure.11 Membership function of input variables
Figure.12 Membership function of output variables
Figure.13 Time response waveform with variations in system parameters
Figure.14 Time response waveform without variation in system parameters
Tables

Table.1 Fuzzy rule matrix for tuning the K_{PS} parameter.
Table.2 Fuzzy rule matrix for tuning the K_{IS} parameter.
ABSTRACT

It has been a practice in control system design to provide certain means of control in any control system by using different techniques such as adding compensators like PI, PD, and PID. This kind of model-based compensation has limitations in the case of poor process model and parameters of a system that vary during the process. However, fuzzy logic control has been found particularly useful for controller design when the plant model is unknown or parameter variation during the process. It does not need an exact process model and has been robust with respect to disturbances, large uncertainty and variations in the process behavior. With the incorporation of machine intelligence techniques such as fuzzy logic, artificial neural networks, and evolutionary computation with the conventional controller brings better response then fuzzy logic control approach.

This seminar presents a design method in the development of compensators for control systems using the hybrid of the conventional proportional-integral (PI) method and fuzzy logic (“adaptive fuzzy logic control”) approach to design a robust brushless dc motor controller for variable speeds. Such robust controller consists of a PI controller tuned by fuzzy logic. The fuzzy logic tuner is used to adjust the two gains of the PI controller when the parameter of the system varies, that provide an optimal response.
CHAPTER-1

INTRODUCTION

System control is a very challenging area in the field of control systems engineering, which widens the research and development of different control techniques in linear and non-linear, single and multivariable systems. Different control techniques have been formulated such as conventional PI, PD, and PID control, machine intelligence (e.g. fuzzy logic, neural networks, evolutionary computation), and the mixture of both with the hybridization of the conventional PI control method and fuzzy logic, as an example. The brushless dc motor is a permanent-magnet synchronous machine supplied from a six-transistor inverter with the switching on/off of the inverter determined by the rotor position. This system is becoming increasingly attractive in servo and variable-speed applications since it can produce a torque-speed characteristic similar to that of a permanent-magnet dc motor while avoiding the problems of the failure of brushes and mechanical commutation. Due to the presence of parameter variations in a brushless dc motor, adaptive control becomes necessary in order to obtain a reasonable behavior of a closed-loop system. As it is difficult to know the exact parameters of a brushless dc motor with different mechanical loads, we try to introduce the fuzzy algorithm to an adaptive tuner of a PI Controller.